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The spatial distribution of structural relaxation in a supercooled liquid is studied using molecular dynamics
simulations of a two-dimensional binary mixture. It is shown that the spatial heterogeneity of the relaxation
along with the time scale of the relaxation is determined, not by the frequency with which particles move a
distance � /2kBragg, but by the frequency with which particles can achieve persistent displacements. We show
that these persistent displacements are achieved through the coupled action of local reorganizations and unre-
coverable thermal strains.
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Unlike the diffusion constant, the structural relaxation
time scales with temperature in a manner similar to the shear
viscosity at large supercoolings �1�. As it is the large increase
of the shear viscosity on supercooling that defines the glass
transition, understanding the associated structural relaxation
is an important issue. What kinds of particle motion are re-
sponsible for structural relaxation in a dense amorphous ma-
terial? In this paper we present evidence from molecular dy-
namics simulations to show that structural relaxation is
associated with the heterogeneous distribution, not of the
amplitude of particle displacements, but of the irreversibility
of particle motion �identified here by the lifetime of particle
displacements away from their original positions�. The slow
down of structural relaxation on cooling results from the
associated scarcity of these regions of persistent displace-
ment. Moving beyond the simple language of “cage es-
capes,” we show that the persistent displacements respon-
sible for structural relaxation consist of long-lived strainlike
motions associated with one or more sites of more extensive
reorganization.

To begin we require a measure of structural relaxation in
which each particle’s contribution to structural memory is
explicit. To this end, we define the following structural re-
laxation function. Let Fd�t� be defined as

Fd�t� =
1

N��
i

wi�d,t�� , �1�

where wi�d , t�=1 if the particle is within a distance d of its
initial position at a time t and zero otherwise. The average is
over the initial time. We shall choose d=� /2kBragg, where
kBragg is the magnitude of the wave vector of the first maxi-
mum in the total structure factor S�k�. This value of d is the
shortest distance for which Re�exp�−ikBraggd��=0. We shall
refer to this volume about a particle’s initial site as the “cell.”

Functions similar or identical to Fd�t� have been used pre-
viously to study the four-point susceptibility in molecular
dynamics �MD� simulations �2� and granular material �3,4�.
All of these groups examined how the choice of d affected
their correlation functions and chose values of d so as to
achieve a maximum �2,4� or near maximum �3� in the height
of the �4�t� peak. In contrast, we treat Fd�t� as a structural
relaxation function and hence, as in the case of the interme-

diate scattering function, the length scale d is fixed by the
choice of the wave vector associated with that structure. The
value of d used here �d=0.283� to study structural relaxation
is similar to or somewhat smaller than the values 0.3 �2� and
0.5 �3� used in previous studies. While Fd�t� monitors only
self-motion there is considerable evidence �5,6� supporting
the proposition that in the supercooled liquid the individual
particle motions have become so tightly correlated with the
collective motion of the surrounding particles that there is
little difference between the relaxation behavior of the self
and collective correlation functions.

For a glass-forming liquid, we use a two-dimensional
�2D� equimolar binary mixture of particles interacting via
purely repulsive potentials of the form

uab�r� = ���ab

r
	12

, �2�

where �12=1.2�11 and �22=1.4�11. All units quoted will be
reduced so that �11=�=m=1.0 where m is the mass of both
types of particle. Specifically, the reduced unit of time is
given by �=�11 �m /��1/2 so that, at T=0.4, the average time
between velocity reversals is 0.1� �1�. A total of N=1024
particles were enclosed in a square box with periodic bound-
ary conditions. We note that 2D liquids are playing an in-
creasingly important role in resolving the complex dynamics
near the glass transitions in both experiments �7,8� and simu-
lations �9�. This model and its approach to the glass transi-
tion have been studied in detail and readers are directed to
these papers �10� for more information. The simulations
were carried out at constant pressure �P=13.5� using a Nosé-
Poincaré-Andersen algorithm �11�. We note that the rescaling
of particle positions associated with the volume fluctuations
of the NPT ensemble can contribute to the rate at which
particles escape their cell. We have checked for this by re-
peating the calculations in the NVT ensemble at T=0.4 and
find no significant difference in the distribution of escape
rates or lifetimes.

In Figs. 1 and 2 we compare the time dependence of the
relaxation functions and the temperature dependence of the
relaxation times obtained from Fd�t�, where d=0.283�11, and
from the intermediate scattering function Fs�k2 , t�, the latter
function referring to the relaxation of the large particle sub-
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population. �The relaxation time is defined as the time at
which the relaxation function equals 1 /e. In the case of the
intermediate scattering function this time is called ��.� We
find that the new structural relaxation function Fd�t� closely
resembles the intermediate scattering function Fs�k2 , t� �7�,
and that the relaxation times obtained from the two functions
exhibit almost identical magnitudes and temperature depen-
dence. In Fig. 3 we show a sequence of maps, taken from a
single trajectory at T=0.4, showing the spatial distribution of
particles that have left their cells as relaxation proceeds.
While there are considerable fluctuations between snapshots
in Fig. 3, it is evident that there is an underlying spatial
heterogeneity associated with structural relaxation. In this
paper we shall establish the source of this heterogeneity.

Our goal in this paper is to describe the particle motions
responsible for structural relaxation. An obvious �and, we
shall see, incorrect� approach would be to look at how each
particle first escaped from its cell. The problem with this
approach is evident in Fig. 4 where we plot the fraction of
particles at T=0.4 that have managed to remain outside their
cell for a period longer than x during the time interval t.
Selecting x=0 �i.e., counting any escape at all, no matter
how short-lived� we see that the fraction of particles that

have never left their cell decays very rapidly with time t,
much faster than the structural relaxation itself. This is be-
cause escapes are both widespread and, overwhelmingly,
quickly reversed. The length scale associated with structural
relaxation �which, for our purposes, is the radius of the cell�
is simply small enough that particles are capable of departing
without significant local rearrangements. �Even in the single
component small particle crystal at T=0.4, well below Tm
=0.95, roughly 60% of the particles have escaped their initial
cells at least once within 10�.�

Since most departures of a particle from its cell are re-
versed, the escape events cannot, in general, be directly as-
sociated with irreversible relaxation. What we are interested
in are those rarer events where the movement out of the cell
occurs in such a way as to be unrecoverable over some time
interval, sufficiently long to filter out reversible vibrations
but not so long as to see the motion corresponding to the
elementary processes of relaxation being “overwritten” by
subsequent particle movements. This problem, the identifica-
tion an elementary irreversible event, is similar to that ad-
dressed by Heuer and co-workers �12� in implementing the
idea of metabasins. The difference between this work and
that of Ref. �12� is that here we need to identify the real
space character of the elementary irreversible processes. We
believe that a time interval in the range 10–20� satisfies
these requirements. �For comparison, the transverse wave at
T=0.4 traverses the sample in 
7� �13�.� This conclusion is
based on the following three observations:

�1� In Fig. 4 we have plotted the time dependence at T
=0.4 of the fraction of particles that have not yet managed to
achieve an escape lifetime of x, where x=0, 1, 10, 20, and
50�. The decay of each of these functions represents the rate
at which particles are achieving escapes of various life times.
If we compare these decays with that of the structural relax-
ation function we see that around the time at which Fd

1 /e, the decay curves for x=10� and 20� straddle the
structural relaxation function.

�2� In Fig. 5 we have plotted a time ordered sequence of
maps showing the positions of particles that have managed
an escape of duration x at least once during the time of
observation the value of x is indicated by different colors. It
is clearly evident from these maps that heterogeneity in
structural relaxation arises, not from the act of cell escape

FIG. 1. The relaxation functions Fd�t� and Fs�k2 , t� �with k2=5.36�11
−1� at T= �from left to right� 1, 0.8, 0.6, 0.55, 0.5, 0.46, and 0.4.

FIG. 2. Arrhenius plots of the relaxation times �e from Fd�t� and
Fs�k2 , t� �with k2=5.36�11

−1� as a function of temperature.
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itself, which quickly achieves a homogeneous distribution,
but from spatial variation in the duration of these escapes.

�3� The spatial correlations among those particles that are
reluctant to return to their cells, evident in Fig. 5, can be
quantified in terms of cluster analysis. In Fig. 6 we show
how the maximum size of clusters comprised of the first 10%
of particles to have escape lifetime in excess of x depends on
the choice of x for a range of temperatures. We find that the
clustering reaches a maximum at around an escape lifetime

of x=10� for all T�1. �The distribution of the average clus-
ter size shows a similar maximum at an escape lifetime of
10�.� The clustering of the particles involved in persistent
displacement increases significantly as the temperature is
lowered.

Having settled on an escape lifetime between 10–20� as
defining the “elementary” processes of relaxation, we can
return to our goal, the physical description of the particle
movements that constitute these processes. Given the pos-
sible complexity of the geometry of the motions, we shall
focus on the topological changes only. If the motion re-
sembled the “cage escape” frequently mentioned in the con-
text of supercooled liquids, we would expect the escapee to
have quickly lost a significant fraction of the neighbors that
it had immediately prior to its departure from the cell. Con-
versely, if the motion resembled a strain deformation, then a
particle could escape its cell while still retaining all of these
initial neighbors. We shall refer to a displaced particle that
has lost no more than one neighbor as having been involved
in a strain, other displacements will be referred to as reor-
ganizations. In Fig. 7 we have plotted the fraction of escaped
particles that are identified as being involved in a strain as a
function of the time elapsed since their escape. We find that
roughly 80–90 % of particles escape their cell as part of a
strainlike motion and, after an escape lifetime of 10�, from
30% �T=1� to 70% �T=0.5� of the escaped particles still
remain surrounded by all or almost all of their initial neigh-
bors. These observations lead us to our second significant
result—that a substantial fraction of particles that made a
long-lived contribution to structural relaxation did so, not by
some significant local rearrangement but, rather, by ther-
mally generated unrecoverable strains. As shown in Fig. 7,
these strains can persist as strains for a substantial fraction of

FIG. 3. The spatial heterogeneity of structural relaxation. A sequence of configurations generated during a T=0.4 trajectory in which
particles are indicated as filled circles if, at each of the indicated times, they are outside of their initial cells.

FIG. 4. �Color online� The fraction Fcell�x , t� of particles at T
=0.4 that have not yet left their cells for a period of time greater
than x, where x=0, 1, 10, 20, and 50�, as a function of t the time of
observation. For comparison, the function Fd�t�, the fraction of par-
ticles in their cells after time t, is also plotted for T=0.4. A dashed
line indicates Fd�t�=1 /e.
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the structural memory time of the liquid �e.g., of the escapes
at T=0.4 that persist for ��, 30% persist as strains�.

In Fig. 8, we present an initial configuration at T=0.4
with those particles that were involved in strains or reorga-
nizations when their escape lifetime reached 20� indicated
by open and filled circles, respectively. The particles in-
volved in strains make up compact extended domains while
those particles associated with reorganizations appear in

small groups or in isolation. The color coding reveals the
groups of particles that left their cells at roughly similar
times. The presence of well-defined domains of roughly co-
incident motions in which neighborhoods were retained is
consistent with our description of the motion as a collective
strain. Significantly, we also see that reorganization events
typically occur at similar times and locations to the local
strain events. This suggests that the two are coupled. Such a
coupling could certainly account for why the strains were
irreversible. The complex reorganization event would frus-

FIG. 5. �Color online� A sequence of configurations generated during a T=0.4 trajectory �the same as used in Fig. 2�. Particles are colored
�see online version� according to their maximum escape lifetime �in units of �� during the elapsed time t.

FIG. 6. �Color online� The maximum size of cluster formed
from the first 10% of particles to achieve an escape lifetime x as a
function of x for T=0.4, 0.46, 0.5, 0.6, and 1. Note that the peak
occurs around 10� for all temperatures. The error bars represent one
standard error.

FIG. 7. �Color online� The fraction of escaped particles that are
involved in strains Fstrain�t� as a function of the time t since their
escape. Data are shown for T=0.4, 0.46, 0.5, 0.6, and 1. The verti-
cal dotted line indicates a lifetime of 10�.
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trate not only its own reversal but also that of the strain field
coupled to it. In Fig. 9 we plot the analogous time correlated
maps as in Fig. 8 but for a larger system with N=4096 par-
ticles. We observe the same temporal and spatial correlations
between the localized reorganizations and unrecoverable
strains as seen in the smaller system.

Our two conclusions are: �i� that the rate of structural

relaxation and its spatial heterogeneity are determined by the
statistics of localized variation, not in the amplitude of par-
ticle displacements, but in the probability that these small
displacements �of size � /2kBragg� are long lived, and �ii� that
these long-lived displacements take the form of thermally
excited collective strains in association with highly localized
particle reorganizations. The heterogeneities relevant to
structural relaxation, in other words, are not to be defined in
terms of slow/fast or immobile/mobile particles but corre-
spond, instead, to irreversible/reversible displacements.
These conclusions lead us on to two fundamental questions:
what causes the localization and what causes irreversibility?
Previously, we have shown that the spatial distribution of
reorganizations, as quantified by the loss of four nearest
neighbors, correlates well with the spatial distribution of soft
quasilocalized modes �14�. While we have yet to complete
the comparison between the modes and the irreversible mo-
tions identified in this study, it seems reasonable to suggest
that these modes are also responsible for the heterogeneity
we see in the structural relaxation.

Explaining irreversibility is a more awkward proposition.
Irreversibility is a consequence of dynamics accessing a suf-
ficient volume of configuration space such that the trajectory
can “get lost” and, as a result, have a low probability of
returning. This idea represents the kinetic �as opposed to
thermodynamic� justification behind the introduction of the
entropic droplet model �15� for relaxation in the amorphous
energy landscape. While a collective strain may not involve a
sufficient number of independent degrees of freedom to ac-
complish irreversibility, reorganizations �typically� do. Our
results suggest a picture in which structural relaxation is
achieved by the combined action of reorganizations and the
extended strains coupled to them and rendered irreversible
by virtue of this coupling. Experimental visualizations of re-
laxation in 2D granular media �8� appear to support our con-
clusions concerning the importance of strainlike motions in
structural relaxation.

Whereas we have considered relaxation in a liquid at
equilibrium �albeit a metastable one�, there has been consid-
erable work on structural transitions in nonequilibrium amor-
phous phases undergoing shear �16–24�. In 1979 Argon and
Kuo �16� identified an archetypical reorganization event in-
volved in plastic shear flow, a rotation of a pair of particles,
which they called a shear transformation zone �STZ�. More
recently, analysis of materials under shear have identified
local processes related to plastic behavior by determining the
degree to which particle displacements deviate from that ex-
pected for an affine deformation �22�. The concept of non-
affine deformations generalizes the microscopic description
of plastic behavior to explicitly include strainlike contribu-
tions to plastic flow along with reorganizations such as the
STZ’s. At zero temperature �“quasistatic”�, one can ask
whether the displacements resulting from an applied shear
strain can be reversed with the reversal of the strain. Apply-
ing this mechanical criterion, Lundberg et al. �23� have
shown that STZ events can be either irreversible or revers-
ible. Finally, a number of recent studies �24� have described
the extended strain fields associated with relaxing mechani-
cally induced stresses under conditions of plastic flow. This
body of work contains clear parallels with the results de-

FIG. 8. �Color online� An initial configuration at T=0.4 is
shown in which each particle is depicted as either a filled or open
circle depending on whether they were involved in a reorganization
or a strain, respectively, when their escape lifetime reached 20�.
The color scale �see online version� indicates the time �in �� during
the trajectory at which each particle achieved its 20� escape life-
time. Particles with the same color reached their 20� lifetime within
the same time period.

FIG. 9. �Color online� An initial configuration of a 4096 particle
system at T=0.4. Each particle is depicted as either a filled or open
circle depending on whether they were involved in a reorganization
or a strain, respectively, when their escape lifetime reached 20�.
Particles with the same color �see online version� reached this life-
time within the same time period. Large and small circles indicate
large and small particles.
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scribed in this paper for the relaxation of thermal fluctuations
at equilibrium. Exploring the relationship between these two
pictures of amorphous relaxation—on one hand, the equilib-
rium one of soft local modes, and thermal reorganizations
coupled to strain fields, and, on the other hand, the nonequi-

librium quasistatic picture of STZ’s and nonaffine strain
fields—holds the promise of unifying the spatial description
and, hence, physical understanding of the microscopic
mechanisms of structural and stress relaxation in disordered
materials.
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